
Chapter 11 :

Informatics

Practices

Class XII (As per

CBSE Board)

Interface python
with SQL

Database And
SQL commands

Visit : python.mykvs.in for regular updates

New

Syllabus

2019-20

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

A database is nothing but an organized collection of data. Data is organized into rows, columns and

tables and it is indexed to make it easier to find relevant information. All companies whether large or

small use databases. So it become necessary to develop project/software using any programming

language like python in such a manner which can interface with such databases which support

SQL.Generalised form of Interface of python with SQL Database can be understood with the help of

this diagram.

Form/any user interface designed in any programming language is Front End where as data given

by database as response is known as Back-End database.

SQL is just a query language, it is not a database. To perform SQL queries, we need to install any

database for example Oracle, MySQL, MongoDB, PostGres SQL, SQL Server, DB2 etc.

Using SQL in any of the dbms ,databases and table can be created and data can be accessed,

updated and maintained. The Python standard for database interfaces is the Python DB-API. Python

Database API supports a wide range of database servers, like msql , mysql, postgressql, Informix,

oracle, Sybase etc.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

Why choose Python for database programming

Following are the reason to choose python for database

programming

• Programming more efficient and faster compared to other

languages.

• Portability of python programs.

• Support platform independent program development.

• Python supports SQL cursors.

• Python itself take care of open and close of connections.

• Python supports relational database systems.

• Porting of data from one dbms to other is easily possible as it

support large range of APIs for various databases.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

SQL Connectors

We must download a separate DB API module for each

database we need to access. Suppose we need to access an

Oracle database as well as a MySQL database, we must

download both the Oracle and the MySQL database modules .

The DB API provides a minimal standard for working with

databases using Python structures and syntax wherever

possible.

This API includes the following −

● Importing the API module.

● Acquiring a connection with the database.

● Issuing SQL statements and stored procedures.

● Closing the connection

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

Here we are using mysql as back end database because of it is open

source,free and portable and widely used. Any one of mysql-

connector or MySQLdb can be used for database programming.

1. mysql-connector

MySQL-Connector enables Python programs to access MySQL

databases, using an API that is compliant with the Python Database

API Specification v2.0 (PEP 249). It is written in pure Python and does

not have any dependencies except for the Python Standard Library.

Steps to use mysql-connector

1. Download Mysql API ,exe file and install it.(click here to download)

2. Install Mysql-Python Connector (Open command prompt and

execute command) >pip install mysql-connector

3. Now connect Mysql server using python

4. Write python statement in python shell import mysql.connector

If no error message is shown means mysql connector is properly

installed

https://dev.mysql.com/downloads/connector/python/

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

2. MySQLdb

MySQLdb is an interface for connecting to a MySQL database server

from Python. It implements the Python Database API v2.0 and is built

on top of the MySQL C API.

Steps to use mysqlclient

1. First Upgrade pip command through > python –m pip install –

upgrade pip
2. Install mysqlclient through pip install mysqlclient

3. After successful installation check through import mysqldb

4. If it is installed no error will be displayed otherwise error message will be

displayed

To install MySQLdb module, use the following command −

For Ubuntu, use the following command -

$ sudo apt-get install python-pip python-dev libmysqlclient-dev

For Fedora, use the following command -

$ sudo dnf install python python-devel mysql-devel redhat-rpm-config gc c

For Python command prompt, use the following command -

pip install MySQL-python

Note − Make sure you have root privilege to install above module

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

Establish connection

For database interface/database programming ,connection must be

established.Before establishing connection there must be mysql installed on

the system and a database and table is already created.In following way we

can establish a connection with mysql database through mysql.connector.
import mysql.connector

mydb=mysql.connector.connect(host="localhost",user="root",passwd="root“,database

=“school”)

print(mydb)

Alternatively we can write the following statement if we are using mysqldb

import MySQLdb

mydb = MySQLdb.connect("localhost",“root",“root",“school")

print(mydb)

In both way we are specifying host,user,password and database name as

arguments.database is optional argument if we want to create database

through programming later on.

After successful execution of above statements in python following out will

be displayed

<mysql.connector.connection.MySQLConnection object at 0x022624F0>

Otherwise an error message will be shown.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

Cursor object :

The MySQLCursor class instantiates objects that can execute operations

such as SQL statements. Cursor objects interact with the MySQL server

using a MySQLConnection object.

How to create cursor object and use it
import mysql.connector

mydb=mysql.connector.connect(host="localhost",user="root",passwd="root")

mycursor=mydb.cursor()

mycursor.execute("create database if not exists school")

mycursor.execute("show databases")

for x in mycursor:

print(x)

Through line 4 we are creating a database named school if it is already not

created with the help of cursor object.

Line 5 executes the sql query show databases and store result in mycursor

as collection ,whose values are being fetched in x variable one by one.

On execution of above program school database is created and a list of

available databases is shown.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

How to create table at run time

Table creation is very easy ,if we are already well versed in sql table creation

then we have to just pass the create table query in execute() method of

cursor object. But before table creation we must open the database.Here we

are opening database school(through connect() method) before student table

creation.

import mysql.connector

mydb=mysql.connector.connect(host="localhost",user="root",passwd="root"

,database="school")

mycursor=mydb.cursor()

mycursor.execute("create table student(rollno int(3) primary key,name

varchar(20),age int(2))")

On successful execution of above program a table named student with three

fields rollno,name,age will be created in school database.

We can check student table in mysql shell also,if required.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

How to change table structure/(add,edit,remove colum of a table) at run time

To modify the structure of the table we just have to use alter table

query.Below program will add a column mark in the student table.

import mysql.connector

mydb=mysql.connector.connect(host="localhost",user="root",passwd="root"

,database="school")

mycursor=mydb.cursor()

mycursor.execute("alter table student add (marks int(3))")

mycursor.execute("desc student")

for x in mycursor:

print(x)

Above program will add a column marks in the table student and will display

the structure of the table

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

How to search records of a table at run time

Below statement demonstrate the use of select query for searching specific

record from a table.

import mysql.connector

mydb=mysql.connector.connect(host="localhost",user="root",passwd="root"

,database="school")

mycursor=mydb.cursor()

nm=input("enter name")

mycursor.execute("select * from student where name='"+nm+"'")

for x in mycursor:

print (x)

Above statements will prompt a name from user,as user type the name ,that

name is searched into the table student with the help of select query .result

will be shown with the help of mycursor collection.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

How to fetch all records of a table at run time

import mysql.connector

mydb=mysql.connector.connect(host="localhost",user="root",passwd="root"

,database="school")

mycursor=mydb.cursor()

mycursor.execute("select * from student")

myrecords=mycursor.fetchall()

for x in myrecords:

print (x)

MySQLCursor.fetchall() Method

The method fetches all (or all remaining) rows of a query result set and returns a

list of tuples. If no more rows are available, it returns an empty list.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

How to fetch one record of a table at run time

import mysql.connector

mydb=mysql.connector.connect(host="localhost",user="root",passwd="root"

,database="school")

mycursor=mydb.cursor()

mycursor.execute("select * from student")

row=mycursor.fetchone()

while row is not None:

print(row)

row = mycursor.fetchone()

MySQLCursor.fetchone() Method

This method retrieves the next row of a query result set and returns a single

sequence, or None if no more rows are available. By default, the returned tuple

consists of data returned by the MySQL server, converted to Python objects.

MySQLCursor.fetchmany() Method

rows = cursor.fetchmany(size=1)

This method fetches the next set of rows of a query result and returns a list

of tuples. If no more rows are available, it returns an empty list.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

How to delete record of a table at run time

import mysql.connector

mydb=mysql.connector.connect(host="localhost",user="root",passwd="root"

,database="school")

mycursor=mydb.cursor()

mycursor.execute("delete from student where rollno=1")

mydb.commit()

In above program delete query will delete a record with rollno=1.commit()

method is necessary to call for database transaction.

How to update record of a table at run time

import mysql.connector

mydb=mysql.connector.connect(host="localhost",user="root",passwd="root"

,database="school")

mycursor=mydb.cursor()

mycursor.execute("update student set marks=99 where rollno=2")

mydb.commit()

In above program update query update the marks with 99 of rollno=2

Students are advised to develop menu driven program using above concepts

for better understating of python mysql database interface.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

Manage Database Transaction

Database transaction represents a single unit of work. Any operation

which modifies the state of the MySQL database is a transaction.

Python MySQL Connector provides the following method to manage

database transactions.

commit – MySQLConnection.commit() method sends a COMMIT

statement to the MySQL server, committing the current transaction.

rollback – MySQLConnection.rollback revert the changes made by

the current transaction.

AutoCommit – MySQLConnection.autocommit value can be assigned

as True or False to enable or disable the auto-commit feature of

MySQL. By default its value is False.

Interface python with SQL Database

Visit : python.mykvs.in for regular updates

Manage Database Transaction
try:

conn = mysql.connector.connect(host='localhost',

database='school',

user='root',

password='root')

conn.autocommit = false

cursor = conn.cursor()

sql_update_query = """Update student set marks = 95 where rollno = 2"""

cursor.execute(sql_update_query)

print ("Record Updated successfully ")

#Commit your changes

conn.commit()

except mysql.connector.Error as error :

print("Failed to update record to database rollback: {}".format(error))

#reverting changes because of exception

conn.rollback()

finally:

#closing database connection.

if(conn.is_connected()):

cursor.close()

conn.close()

print("connection is closed")

In above program if update query is successfully executed then commit() method will be executed

otherwise exception error part will be executed where revert of update query will be done due to

error.At finally we are closing cursor as well as connection.To rollback or commit we have to set

autocommit=false,just like conn.autocommit = false in above program otherwise rollback will not work

SQL Commands

Visit : python.mykvs.in for regular updates

Grouping Records in a Query
• Some time it is required to apply a Select query in a group of

records instead of whole table.

• We can group records by using GROUP BY <column> clause

with Select command. A group column is chosen which have

non-distinct (repeating) values like City, Job etc.

• Generally, the following Aggregate Functions [MIN(), MAX(),

SUM(), AVG(), COUNT()] etc. are applied on groups.

Name Purpose

SUM() Returns the sum of given column.

MIN() Returns the minimum value in the given column.

MAX() Returns the maximum value in the given column.

AVG() Returns the Average value of the given column.

COUNT() Returns the total number of values/ records as per given
column.

SQL Commands

Visit : python.mykvs.in for regular updates

Aggregate Functions & NULL

Consider a table Emp having following records as-

Null values are excluded while (avg)aggregate function is

used

SQL Queries

mysql> Select Sum(Sal) from EMP;

mysql> Select Min(Sal) from EMP;

mysql> Select Max(Sal) from EMP;

mysql> Select Count(Sal) from EMP;

mysql> Select Avg(Sal) from EMP;

mysql> Select Count(*) from EMP;

Emp

Code Name Sal

E1 Mohak NULL

E2 Anuj 4500

E3 Vijay NULL

E4 Vishal 3500

E5 Anil 4000

Result of query

12000

3500

4500

3

4000

5

SQL Commands

Visit : python.mykvs.in for regular updates

Aggregate Functions & Group

An Aggregate function may applied on a column with DISTINCT or ALL

keyword. If nothing is given ALL is assumed.

Using SUM (<Column>)

This function returns the sum of values in given column or expression.

mysql> Select Sum(Sal) from EMP;

mysql> Select Sum(DISTINCT Sal) from EMP;

mysql> Select Sum (Sal) from EMP where City=‘Jaipur ’;

mysql> Select Sum (Sal) from EMP Group By City;

mysql> Select Job, Sum(Sal) from EMP Group By Job;

Using MIN (<column>)

This functions returns the Minimum value in the given column.

mysql> Select Min(Sal) from EMP;

mysql> Select Min(Sal) from EMP Group By City;

mysql> Select Job, Min(Sal) from EMP Group By Job;

SQL Commands

Visit : python.mykvs.in for regular updates

Aggregate Functions & Group

Using MAX (<Column>)

This function returns the Maximum value in given column.

Using AVG (<column>)

This functions returns the Average value in the given column.

mysql> Select AVG(Sal) from EMP;

mysql> Select AVG(Sal) from EMP Group By City;

Using COUNT (<*|column>)

This functions returns the number of rows in the given
column.

mysql> Select Max(Sal) from EMP;

mysql> Select Max(Sal) from EMP where City=‘Jaipur ’;

mysql> Select Max(Sal) from EMP Group By City;

mysql> Select Count (*) from EMP;

mysql> Select Count(Sal) from EMP Group By City;

mysql> Select Count(*), Sum(Sal) from EMP Group By Job;

SQL Commands

Visit : python.mykvs.in for regular updates

Aggregate Functions & Conditions

You may use any condition on group, if required. HAVING

<condition> clause is used to apply a condition on a group.

mysql> Select Job,Sum(Pay) from EMP

Group By Job HAVING Sum(Pay)>=8000;

mysql> Select Job, Sum(Pay) from EMP

Group By Job HAVING Avg(Pay)>=7000;

mysql> Select Job, Sum(Pay) from EMP

Group By Job HAVING Count(*)>=5;

mysql> Select Job, Min(Pay),Max(Pay), Avg(Pay) from EMP Group

By Job HAVING Sum(Pay)>=8000;

mysql> Select Job, Sum(Pay) from EMP Where City=‘Jaipur’

Note :- Where clause works in respect of whole table but Having works

on Group only. If Where and Having both are used then Where will be

executed first.

SQL Commands

Visit : python.mykvs.in for regular updates

Ordering Query Result – ORDER BY Clause

A query result can be orders in ascending (A-Z) or

descending (Z-A)

order as per any column. Default is Ascending order.

mysql> SELECT * FROM Student ORDER BY City;

To get descending order use DESC key word.

mysql> SELECT * FROM Student ORDER BY City

DESC;

mysql> SELECT Name, Fname, City FROM Student

Where Name LIKE ‘R%’ ORDER BY Class;

